Электропривод с линейными двигателями. Цилиндрический линейный двигатель — новый этап эволюции электроэрозионных станков

Рахимов Андрей Валерьевич

студент Электроэнергетического факультета Ставропольский государственный аграрный университет г. Ставрополь, Россия

Аннотация: В статье рассматривается актуальность внедрения линейных электродвигателей в современные технологические процессы, раскрываются достоинства и недостатки данных электрических машин, приводятся примеры использования линейных электродвигателей.

Ключевые слова: Линейный электродвигатель, электрическая машина, магнитная система, обмотка, статор, механическая передача

Linear motors

Rahimov Andrej Valerevich

student Electricity Department Stavropol State Agrarian University Stavropol, Russia

Abstract: The article discusses the relevance of the implementation of linear motors in modern technological processes are disclosed advantages and disadvantages of these electric cars are examples of the use of linear motors.

Keywords: Linear motor, electric machine, a magnetic system, coil, stator, manual transmission

Линейным электродвигателем называется электрический двигатель с одним разомкнутым элементом магнитной системы, обмотка которого развернута. Обмотка создает магнитное поле, с которым взаимодействует второй элемент магнитной системы, выполненный как направляющая деталь, обеспечивающая перемещение подвижной части линейного электродвигателя . Если провести классификацию конструкций линейных электродвигателей, то можно выделить несколько типов. Основные из них - синхронные, асинхронные, электромагнитные, магнитоэлектрические, магнитострикционные и пьезоэлектрические линейные двигатели . По принципу действия они схожи с электродвигателями, создающими вращательное движение. В основном это синхронные, асинхронные и линейные электродвигатели постоянного тока. В линейном электродвигателе существует две части: первичная – неподвижная, получившая название «статор», и вторичная – подвижная, получившая название «якорь». Якорь электродвигателя получает энергию от статора через магнитное поле.

Рисунок 1 - Условная схема преобразования обычного электродвигателя в линейный:

1 –статор (индуктор), 2 ротор (реактивная полоса)

Линейный электродвигатель является основной частью прямого электропривода. Он создан для преобразования электрической энергии в энергию поступательного движения, т. е. без механической передачи. Такой электропривод состоит из средств управления и изменения скорости, что значительно упрощает конструкцию исполнительных органов и позволяет усовершенствовать различные технологические процессы . В линейном электродвигателе имеется, питаемый электрическим током, индуктор, который является первичным элементом, и специальная реактивная полоса – вторичный элемент (рисунок 1). Эти элементы отделены воздушным зазором. Магнитная система линейного электродвигателя представлена обмоткой определенной длинны, которая необходима для создания движущегося вдоль нее магнитного поля. Это и есть неподвижный элемент. Подвижный элемент благодаря взаимодействию с магнитным полем, перемещается вдоль обмотки.

Линейные электродвигатели подразделяются на асинхронные и синхронные. В асинхронном линейном электродвигателе реактивная полоса, выполненная в виде бруска прямоугольного сечения без обмоток, закрепленная вдоль путепровода, над которым перемещается электровоз, перемещающий подвижную часть (индуктор) двигателя. Его магнитопровод выполнен с развернутыми многофазными обмотками, питаемыми от источника переменного тока. Благодаря взаимодействию магнитного поля индуктора с полем реактивной полосы, возникают силы, заставляющие перемещаться с ускорением индуктор относительно неподвижной реактивной полосы. Это перемещение происходит до тех пор, пока скорости перемещения индуктора и бегущего магнитного поля реактивной полосы не сравняются. Преимуществом такой конструкции является размещение более простой в изготовлении реактивной полосы.

Основные достоинства линейного электропривода – это отсутствие механической передачи и вращающихся частей, простота в эксплуатации, большой технический ресурс. К основным недостаткам можно отнести сложность устройства и высокую стоимость изготовления, плохие энергетические показатели, связанные с наличием больших воздушных зазоров в магнитной цепи и ее разомкнутостью.

Наиболее часто используются линейные двигатели в электрическом транспорте. Этому способствует ряд преимуществ. Прямолинейный характер движения подвижной части, подходящий для движения различных транспортных средств. Энергия магнитного поля непосредственно преобразуется в механическую, что позволяет добиться высокого КПД. Важное преимущество линейных электродвигателей состоит в независимости силы тяги от силы сцепления колес с путем. Это невозможно для обычных систем электрической тяги. Благодаря использованию линейных электродвигателей проскальзывание колес исключается, а скорости движения транспорта могут быть довольно высокими и ограничиваются лишь комфортабельностью движения, максимально допустимой скоростью вращения колес, и динамической устойчивостью транспорта и пути.

В приводе механизмов транспортировки грузов различных изделий также применяются линейные асинхронные двигатели. Как правило, это конвейеры, имеющие ленту из металла, которая проходит внутри статоров линейного двигателя, являясь при этом вторичным элементом. Использование линейного электродвигателя позволяет снизить предварительное натяжение ленты и устранить ее проскальзывание, повысить скорость и надежность работы конвейера.

В сваезабивных молотах, используемых при дорожных работах или строительстве, также применяется линейный электропривод. Статор электродвигателя перемещается вдоль стрелы в вертикальном направлении при помощи лебедки. Ударная часть молота является одновременно вторичным элементом двигателя. Для ее подъема двигатель включается таким образом, чтобы бегущее поле было направлено вверх. Когда ударная часть поднимется к крайнему верхнему положению, двигатель отключается, и она опускается вниз на сваю под действием силы тяжести. Иногда двигатель не отключается, а реверсируется, это позволяет увеличить ударную энергию. При заглублении сваи статор двигателя перемещается вниз с помощью лебедки. Электрический молот прост в изготовлении, не требует повышенной точности изготовления деталей, нечувствителен к изменению температуры и может вступать в работу практически мгновенно.

Благодаря появлению линейных электродвигателей, усовершенствованы многие технологические процессы, начиная от создания нового вида гидравлических насосов и заканчивая усовершенствованием машинного доения животных . Развитие науки и техники позволяет упростить выполнение технологических процессов и в конечном итоге снизить издержки производства, что необходимо для повышения конкурентоспособности отечественных производителей товаров.

Список литературы:

  1. Гринченко В. А. Обоснование базовой конструкции линейного электродвигателя // Theoretical & Applied Science. - 2013. - Т. 1. - №11 (7). - С. 58-60.
  2. Гринченко В. А. Обоснование конструктивно-режимных параметров доильного аппарата с электропульсатором на основе линейного двигателя: дис. ... канд. техн. наук: 05.20.01 - Технологии и средства механизации сельского хозяйства, 05.20.02 - Электротехнологии и электрооборудование в сельском хозяйстве. - Ставрополь, 2011. - 197 с.
  3. Никитенко Г. В., Гринченко В. А. Линейный двигатель возвратно-поступательного движения с регулированием амплитуды колебаний якоря // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. - Ставрополь: Агрус, 2009. - С. 407-410.
  4. Никитенко Г. В., Гринченко В. А. Результаты исследования линейного двигателя для вакуумного пульсатора доильного аппарата // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. - Ставрополь: Агрус, 2010. - С. 268-271.
  5. Никитенко Г. В., Гринченко В. А. Статика электромеханических процессов в линейном электродвигателе для привода пульсатора доильного аппарата // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. - Ставрополь: Агрус, 2011. - С. 199-202.
  6. Пат. 2357143 Российская Федерация, МПК F 16 К 31/06. Электромагнитный клапан / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2007141983/06; заявл. 12.11.07; опубл. 27.05.09.
  7. Пат. 2370874 Российская Федерация, МПК H 02 K 33/12. Линейный двигатель / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2008112342/09; заявл. 31.03.08; опубл. 20.10.09.
  8. Пат. 82990 Российская Федерация, МПК А 01 J 7/00. Регулятор вакуума / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2008150545/22; заявл. 19.12.08; опубл. 20.05.09.

Католицкий Никита Александрович

студент Электроэнергетического факультета Ставропольский государственный аграрный университет г. Ставрополь, Россия

Аннотация: В статье описано устройство, виды линейных двигателей их отличия от других видов электродвигателей, подробно описано применение, достоинства и недостатки. Цель статьи заключается в описании преимущества линейных двигателей над другими.

Ключевые слова: Линейный электродвигатель, ротор, статор, привод, якорь, магнитопровод

Linear electric motor

Katolickij Nikita Aleksandrovich

student Electricity Department Stavropol State Agrarian University Stavropol, Russia

Abstract: In article the device, types of linear engines of their difference from other types of electric motors is described, application, merits and demerits is in detail described. The purpose of article consists in the description of advantage of linear engines over others.

Keywords: linear electric motor, rotor, stator, drive, anchor, magnetic conductor

На протяжении многих лет промышленность зависит от различных ременных и винтовых передач, а также пневматических механизмов необходимых для выполнения линейного позиционирования. Спрос на высокоскоростную пропускную способность, многочисленные рабочие циклы, гибкую настройку и программирование позволил определить недостатки в этих устройствах. Часто при выполнении точного контролируемого позиционирования в поступательном движении приходится идти на компромисс.

Благодаря технологии непосредственного привода линейного двигателя достигается высокое качество решения задач линейного позиционирования. Эта технология подразумевает непосредственное использование силы электромагнитного взаимодействия без использования ремня, шариковинтовой передачи либо промежуточного звена другого вида. Линейный привод обеспечивает непосредственное линейное перемещение (преобразование вращательного движения в поступательное не происходит).

Рисунок 1 – Устройство линейного двигателя

Электрический линейный двигатель является механизмом, в котором подвижная часть не находится во вращении (в традиционных вариантах двигателей подвижная часть вращается), а линейно перемещается вдоль неподвижной части агрегата, представленной в виде незамкнутого магнитопровода, длина которого имеет произвольное значение. Внутри магнитопровода создается бегущее магнитное поле. В стандартных электрических двигателях ротатор и статор свернуты в виде колец, а в линейном двигателе эти элементы растянуты в полосы. Благодаря тому, что обмотка статора включается поочередно, создается бегущее магнитное поле. В состав линейного электрического двигателя постоянного тока входит якорь с расположенной на его поверхности обмоткой, являющейся коллектором (направляющим элементом) и разомкнутый магнитопровод с обмотками возбуждения (подвижной частью), распложенными в таком порядке, что векторы сил, появляющихся в полюсах магнитопровода, имеют одно направление. Простота регуляции скорости перемещения подвижной части – отличительная черта линейного электродвигателя. Агрегаты переменного тока могут быть синхронного и асинхронного типа. Якорь в асинхронном линейном электродвигателе выполняется в виде бруска, чаще всего прямоугольного сечения, на котором отсутствует обмотка. Монтаж якоря выполняется вдоль пути перемещения подвижной части агрегата, оснащенной магнитопроводом с развернутыми многофазными обмотками, которые питаются от источника переменного тока. В результате взаимодействия магнитного поля магнитопровода подвижной части и поля якоря появляются силы, заставляющие подвижную часть перемещаться быстрее, относительно неподвижного якоря. Процесс происходит до момента уравнения скорости перемещения подвижной части и бегущего магнитного поля.

Чаще всего такие агрегаты используются в сфере электрического транспорта. Этому способствуют особые преимущества двигателей такого образца:

Прямолинейное движение статора отлично подходит для многих средств передвижения;

Простая конструкция, в которой отсутствуют трущиеся элементы, то есть энергетический поток внутри магнитного поля непосредственно преобразовывается в механическую энергию. Благодаря этому достигаются высокие показатели КПД и надежности агрегата;

Независимость силы тяги от сцепления колесных пар с рельсовыми путями. Это свойство недостижимо для стандартных агрегатов электрической тяги;

Отсутствие вероятности буксирования колес электрического транспорта, что стало причиной для выбора линейного двигателя;

Ускорение и скорость движения транспорта могут иметь любые значения, ограниченные комфортабельностью передвижения, допустимой скоростью качения колес по рельсовым путям и дорогам, а также степенью динамической устойчивости ходовой части транспортного средства и пути.

Линейные двигатели асинхронного типа необходимы для привода механизмов транспортировки различной продукции. Эти конвейеры оснащают металлическими лентами, проходящими внутри статоров линейных двигательных систем, выполняющими функцию вторичного элемента. Благодаря использованию линейной двигательной системы снижается степень предварительного натяжения ленты, устраняется вероятность ее проскальзывания, а также повышаются показатели скорости и надежности работы конвейера.

Линейные двигатели используют для машин ударного действия, к примеру, молоты для забивания свай, необходимые в сфере дорожных работ и строительстве. Статор линейной двигательной системы размещают на стреле молота, а его перемещение по направляющим элементам стрелы в вертикальном направлении обеспечивается благодаря лебедке. Ударная часть молота выполняет функцию вторичного элемента двигательной системы. Для осуществления подъема ударной части молота включение двигателя происходит так, что бегущее поле направляется вверх. При достижении ударным элементом крайнего верхнего положения происходит деактивация двигателя и происходит перемещение ударного элемента вниз на поверхность сваи под воздействием силы тяжести. Иногда деактивация двигателя не происходит – двигательная система работает в реверсивном режиме, увеличивая силу удара. В соответствии со степенью углубления сваи статор двигательной системы перемещается вниз благодаря лебедке. Конструкция электрического молота довольно проста. Его изготовить довольно просто. Повышенная точность в ходе производства его элементов не требуется, а его конструкция не чувствительна к изменениям температурных показателей, потому устройство может моментально приступить к выполнению своих функций.

Одним из видов линейных двигательных систем считаются магнитогидродинамические насосы. Эти устройства используют для перекачивания электропроводных жидкостей. Такие насосы широко используются: в металлургии для выполнения транспортировки, дозировки, а также перемещения металла в жидком виде и на АЭС для выполнения перекачки жидкометаллических теплоносителей.

Магнитогидродинамические насосы бывают двух видов: постоянного и переменного тока. В первом случае в роли первичного элемента (статора) выступает С-образный электромагнит. В воздушный зазор электрического магнита монтируют трубопровод с жидким металлом. Благодаря электродам, приваренным к стенкам трубопровода, пропускается постоянный ток от внешнего источника. В большинстве случаев обмотка возбуждения входит в последовательную цепь электродов. При возбуждении электрического магнита на металл, расположенный на участках, по которым проходит постоянный ток, оказывается воздействие электромагнитной силы, такой же, как сила, действующая на проводник с током, расположенным в зоне магнитного поля. В результате воздействия этой силы происходит перемещение металла по трубопроводу. Ключевые отличия МГД насосов заключаются в отсутствии движущихся механических элементов, а также в возможности герметизации канала транспортировки металла.

К преимуществам линейных двигательных систем стоит отнести отсутствие вращающихся элементов. К недостаткам стоит отнести низкие энергетические показатели, сравнительно со стандартными моделями электрических приводов, что объясняется разомкнутой электромагнитной цепью и существенными рабочими зазорами. Кроме того недостатками является сложность и высокая цена производства. Линейные двигательные системы используют для поездов, высокоскоростного наземного транспорта, относящегося к группе левитирующих транспортных средств. Общие показатели КПД стандартного агрегата и линейного электрического двигателя, в случае его оптимизации, практически равны, в случаях, когда исключаются промежуточные звенья передачи силы тяги. Со временем линейные электродвигатели вытеснят традиционные приводы с редукторами.

Список литературы:

  1. Гринченко В. А. Обоснование базовой конструкции линейного электродвигателя // Theoretical & Applied Science. - 2013. - Т. 1. - №11 (7). - С. 58-60.
  2. Гринченко В. А., Мишуков С. В. Расчет статической силы тяги линейного электродвигателя новой конструкции // Новые задачи технических наук и пути их решения. - Уфа: Аэтерна, 2014. - С. 18-20.
  3. Никитенко Г. В., Гринченко В. А. Линейный двигатель возвратно-поступательного движения с регулированием амплитуды колебаний якоря // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. - Ставрополь: Агрус, 2009. - С. 407-410.
  4. Никитенко Г. В., Гринченко В. А. Результаты исследования линейного двигателя для вакуумного пульсатора доильного аппарата // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. - Ставрополь: Агрус, 2010. - С. 268-272.
  5. Пат. 2357143 Российская Федерация, МПК8 F 16 К 31/06. Электромагнитный клапан / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2007141983/06; заявл. 12.11.07; опубл. 27.05.09.
  6. Пат. 2370874 Российская Федерация, МПК8 H 02 K 33/12. Линейный двигатель / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2008112342/09; заявл. 31.03.08; опубл. 20.10.09.
  7. Пат. 82990 Российская Федерация, МПК8 А 01 J 7/00. Регулятор вакуума / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. - № 2008150545/22; заявл. 19.12.08; опубл. 20.05.09.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ЛИНЕЙНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Рахимов Андрей Валерьевич
Ставропольский государственный аграрный университет


Аннотация
В статье дается определение понятия линейный электродвигатель. Это электрический двигатель с одним разомкнутым элементом магнитной системы, обмотка которого развернута. Обмотка создает магнитное поле, с которым взаимодействует второй элемент магнитной системы, выполненный как направляющая деталь, обеспечивающая перемещение подвижной части линейного электродвигателя. Дается классификация линейных электродвигателей. Основные из них – синхронные, асинхронные, электромагнитные, магнитоэлектрические, магнитострикционные и пьезоэлектрические линейные двигатели. Рассматривается строение линейных электродвигателей. В линейном электродвигателе существует две части: первичная – неподвижная, получившая название «статор», и вторичная – подвижная, получившая название «якорь». Якорь электродвигателя получает энергию от статора через магнитное поле. Линейный электродвигатель является основной частью прямого электропривода. Он создан для преобразования электрической энергии в энергию поступательного движения. Такой электропривод состоит из средств управления и изменения скорости, что значительно упрощает конструкцию исполнительных органов и позволяет усовершенствовать различные технологические процессы. Линейные электродвигатели подразделяются на асинхронные и синхронные. В асинхронном линейном электродвигателе реактивная полоса, выполненная в виде бруска прямоугольного сечения без обмоток, закрепленная вдоль путепровода, над которым перемещается электровоз, перемещающий подвижную часть (индуктор) двигателя. Его магнитопровод выполнен с развернутыми многофазными обмотками, питаемыми от источника переменного тока. Благодаря взаимодействию магнитного поля индуктора с полем реактивной полосы, возникают силы, заставляющие перемещаться с ускорением индуктор относительно неподвижной реактивной полосы. Это перемещение происходит до тех пор, пока скорости перемещения индуктора и бегущего магнитного поля реактивной полосы не сравняются. Преимуществом такой конструкции является размещение более простой в изготовлении реактивной полосы. В статье рассматривается актуальность внедрения линейных электродвигателей в современные технологические процессы, раскрываются достоинства и недостатки данных электрических машин, приводятся примеры использования линейных электродвигателей.

EXAMPLES OF THE USE OF LINEAR MOTORS

Rakhimov Andrey Valerievich
Stavropol State Agrarian University


Abstract
The article defines the concept of a linear motor. This electric motor with one magnetic member open system, winding is deployed. Winding generates a magnetic field which interacts with the second element of the magnetic system, configured as a guide member for moving the movable part of the linear motor. A classification of linear motors. The major ones - synchronous, asynchronous, electromagnetic, magneto, magnetostrictive and piezoelectric linear motors. We consider the structure of the linear motor. In the linear motor, there are two parts: the first - a fixed, known as "stator", and secondary - mobile, dubbed the "anchor". Anchor receives energy from the motor stator through the magnetic field. Linear motor is a major part of direct drive. It is designed to convert electrical energy into translational motion. This actuator consists of the controls and change the speed, which greatly simplifies the design of the executive bodies and allows to improve the various processes. Linear motors are divided into asynchronous and synchronous. In asynchronous linear motor reactive band, made in the form of a bar of rectangular cross section without windings, fixed along the overpass, over which electric moves, moves the movable part (inductor) engine. Its magnetic circuit is configured deployed polyphase windings, is powered by an AC power source. Due to the interaction of the magnetic field of the inductor with the field of reactive bands, the forces that cause to move with acceleration relative to the fixed inductor reactive bands. This movement occurs until the moving speed until the inductor of the running magnetic field and reactive bands are equal. The advantage of this design is the placement of an easier to manufacture the reactive strip. The article discusses the relevance of the implementation of linear motors in modern technological processes are disclosed advantages and disadvantages of these electric cars are examples of the use of linear motors.

Линейным электродвигателем называется электрический двигатель с одним разомкнутым элементом магнитной системы, обмотка которого развернута. Обмотка создает магнитное поле, с которым взаимодействует второй элемент магнитной системы, выполненный как направляющая деталь, обеспечивающая перемещение подвижной части линейного электродвигателя . Если провести классификацию конструкций линейных электродвигателей, то можно выделить несколько типов. Основные из них – синхронные, асинхронные, электромагнитные, магнитоэлектрические, магнитострикционные и пьезоэлектрические линейные двигатели . По принципу действия они схожи с электродвигателями, создающими вращательное движение. В основном это синхронные, асинхронные и линейные электродвигатели постоянного тока. В линейном электродвигателе существует две части: первичная – неподвижная, получившая название «статор», и вторичная – подвижная, получившая название «якорь». Якорь электродвигателя получает энергию от статора через магнитное поле.

Рисунок 1 – Условная схема преобразования обычного электродвигателя в линейный: 1 –статор (индуктор), 2 ротор (реактивная полоса)

Линейный электродвигатель является основной частью прямого электропривода. Он создан для преобразования электрической энергии в энергию поступательного движения, т. е. без механической передачи. Такой электропривод состоит из средств управления и изменения скорости, что значительно упрощает конструкцию исполнительных органов и позволяет усовершенствовать различные технологические процессы . В линейном электродвигателе имеется, питаемый электрическим током, индуктор, который является первичным элементом, и специальная реактивная полоса – вторичный элемент (рисунок 1). Эти элементы отделены воздушным зазором. Магнитная система линейного электродвигателя представлена обмоткой определенной длинны, которая необходима для создания движущегося вдоль нее магнитного поля. Это и есть неподвижный элемент. Подвижный элемент благодаря взаимодействию с магнитным полем, перемещается вдоль обмотки.

Линейные электродвигатели подразделяются на асинхронные и синхронные. В асинхронном линейном электродвигателе реактивная полоса, выполненная в виде бруска прямоугольного сечения без обмоток, закрепленная вдоль путепровода, над которым перемещается электровоз, перемещающий подвижную часть (индуктор) двигателя. Его магнитопровод выполнен с развернутыми многофазными обмотками, питаемыми от источника переменного тока. Благодаря взаимодействию магнитного поля индуктора с полем реактивной полосы, возникают силы, заставляющие перемещаться с ускорением индуктор относительно неподвижной реактивной полосы. Это перемещение происходит до тех пор, пока скорости перемещения индуктора и бегущего магнитного поля реактивной полосы не сравняются. Преимуществом такой конструкции является размещение более простой в изготовлении реактивной полосы.

Основные достоинства линейного электропривода – это отсутствие механической передачи и вращающихся частей, простота в эксплуатации, большой технический ресурс. К основным недостаткам можно отнести сложность устройства и высокую стоимость изготовления, плохие энергетические показатели, связанные с наличием больших воздушных зазоров в магнитной цепи и ее разомкнутостью.

Наиболее часто используются линейные двигатели в электрическом транспорте. Этому способствует ряд преимуществ. Прямолинейный характер движения подвижной части, подходящий для движения различных транспортных средств. Энергия магнитного поля непосредственно преобразуется в механическую, что позволяет добиться высокого КПД. Важное преимущество линейных электродвигателей состоит в независимости силы тяги от силы сцепления колес с путем. Это невозможно для обычных систем электрической тяги. Благодаря использованию линейных электродвигателей проскальзывание колес исключается, а скорости движения транспорта могут быть довольно высокими и ограничиваются лишь комфортабельностью движения, максимально допустимой скоростью вращения колес, и динамической устойчивостью транспорта и пути.

В приводе механизмов транспортировки грузов различных изделий также применяются линейные асинхронные двигатели. Как правило, это конвейеры, имеющие ленту из металла, которая проходит внутри статоров линейного двигателя, являясь при этом вторичным элементом. Использование линейного электродвигателя позволяет снизить предварительное натяжение ленты и устранить ее проскальзывание, повысить скорость и надежность работы конвейера.

В сваезабивных молотах, используемых при дорожных работах или строительстве, также применяется линейный электропривод. Статор электродвигателя перемещается вдоль стрелы в вертикальном направлении при помощи лебедки. Ударная часть молота является одновременно вторичным элементом двигателя. Для ее подъема двигатель включается таким образом, чтобы бегущее поле было направлено вверх. Когда ударная часть поднимется к крайнему верхнему положению, двигатель отключается, и она опускается вниз на сваю под действием силы тяжести. Иногда двигатель не отключается, а реверсируется, это позволяет увеличить ударную энергию. При заглублении сваи статор двигателя перемещается вниз с помощью лебедки. Электрический молот прост в изготовлении, не требует повышенной точности изготовления деталей, нечувствителен к изменению температуры и может вступать в работу практически мгновенно.

Благодаря появлению линейных электродвигателей, усовершенствованы многие технологические процессы, начиная от создания нового вида гидравлических насосов и заканчивая усовершенствованием машинного доения животных . Развитие науки и техники позволяет упростить выполнение технологических процессов и в конечном итоге снизить издержки производства, что необходимо для повышения конкурентоспособности отечественных производителей товаров.


Библиографический список
  1. Гринченко В. А. Обоснование базовой конструкции линейного электродвигателя // Theoretical & Applied Science. – 2013. – Т. 1. – №11 (7). – С. 58-60.
  2. Гринченко В. А. Обоснование конструктивно-режимных параметров доильного аппарата с электропульсатором на основе линейного двигателя: дис. … канд. техн. наук: 05.20.01 – Технологии и средства механизации сельского хозяйства, 05.20.02 – Электротехнологии и электрооборудование в сельском хозяйстве. – Ставрополь, 2011. – 197 с.
  3. Никитенко Г. В., Гринченко В. А. Линейный двигатель возвратно-поступательного движения с регулированием амплитуды колебаний якоря // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. – Ставрополь: Агрус, 2009. – С. 407-410.
  4. Никитенко Г. В., Гринченко В. А. Результаты исследования линейного двигателя для вакуумного пульсатора доильного аппарата // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. – Ставрополь: Агрус, 2010. – С. 268-271.
  5. Никитенко Г. В., Гринченко В. А. Статика электромеханических процессов в линейном электродвигателе для привода пульсатора доильного аппарата // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве. – Ставрополь: Агрус, 2011. – С. 199-202.
  6. Пат. 2357143 Российская Федерация, МПК F 16 К 31/06. Электромагнитный клапан / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. – № 2007141983/06; заявл. 12.11.07; опубл. 27.05.09.
  7. Пат. 2370874 Российская Федерация, МПК H 02 K 33/12. Линейный двигатель / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. – № 2008112342/09; заявл. 31.03.08; опубл. 20.10.09.
  8. Пат. 82990 Российская Федерация, МПК А 01 J 7/00. Регулятор вакуума / Никитенко Г. В., Гринченко В. А.; заявитель и патентообладатель Ставроп. гос. аграр. ун-т. – № 2008150545/22; заявл. 19.12.08; опубл. 20.05.09.


Статьи по теме